
Modeling Cooperation in Heterogeneous Multi-Agent
Systems

Abstract

Modeling the complexity of global economics and politics requires capturing the
diverse interactions of real-world actors with varying capabilities. To address
this, we introduce a framework for running Multi-Agent Reinforcement Learning
scenarios with heterogeneous agents. These agents vary in learning rates, risk toler-
ances, and observational abilities, allowing them to more accurately represent the
diverse behaviors of real-world actors. Preliminary results suggest that sustainable
cooperation can emerge even in the presence of significant asymmetries in agent
capabilities. This highlights the potential of advanced computational models to
help inform policies that improve global economic and political collaboration.

1 Introduction

Cooperation has been the key factor allowing humans to flourish Hare and Woods [2020], Bar-Yam
[2000]. The complexity of modern societies often surpasses our evolutionary capacity for effective
coordination, leading to social dilemmas where individual incentives and collective welfare are
misaligned. These dilemmas manifest themselves in various domains, from the struggle to implement
effective climate policies Kersting [2017], to the difficulties in agreeing to resolutions in order to deal
with pandemics in a timely manner Glennerster et al. [2024]. Coordination problems are also prevalent
in politics, where divergent interests and asymmetric information cause a misalignment of priorities
among stakeholders Frieden and Lake [2015], leading to policy paralysis or, in extreme cases war
Dafoe et al. [2020]. Similarly, in economics cooperation is often undermined by institutional failures
Acemoglu and Robinson [2012]. Institutions may fail either because some members exploit others
or because a lack of trust prevents cooperation, despite mutual cooperation maximizing collective
welfare.

Recent advancements in economic modeling have increasingly focused on utilizing Markov Decision
Processes (MDPs) to address these coordination problems Glennerster et al. [2024], Charpentier et al.
[2021]. MDPs, coupled with Reinforcement Learning (RL) techniques like Temporal Difference
(TD) learning, offer a promising framework for capturing the dynamic interactions among agents. In
particular, these approaches allow for modeling strategic behavior where agents act based on current
states without full knowledge of future outcomes. Agents in these models can adjust their strategies
in response to the evolving economic landscape and other agents, much like governments, firms, and
consumers in the global economy.

In this work, we introduce the novel capability of running TD simulations with heterogeneous agents.
This method allows for the exploration of scenarios where heterogeneity—whether in terms of access
to information, risk tolerance, or market reputation—plays a pivotal role in shaping outcomes. By
simulating environments that reflect these disparities, we can better understand how different agent
characteristics influence overall market dynamics and the potential for cooperation.

To model these different interaction scenarios, we utilize general-sum game environments, where the
total payoff for all participants does not necessarily sum to zero. In contrast to zero-sum games, where
one agent’s gain is exactly another agent’s loss, general-sum games allow for a range of outcomes
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in which cooperation or competition can emerge. In these settings, cooperation may arise even in
situations where agents have incentives to act in their own self-interest Barfuss [2022]. Over time,
self-interested strategies can converge toward a common equilibrium that benefits both sides, even in
the absence of a clear immediate incentive to cooperate, as is characteristic of general-sum games.

This paper is still a work-in-progress, and our current focus has primarily been on adjusting the
agents’ varying capacities to observe and react to their environment. Our early findings suggest
that cooperation between heterogeneous agents that have a knowledge imbalance is feasible. This
preliminary result indicates that even in games with heterogeneous agents, there is potential for
cooperation, and it points to the broader applicability of these techniques in shaping more equitable
economic outcomes.

2 Methods

2.1 Learning Algorithm

We employ the deterministic Expected SARSA Sutton and Barto [2018] algorithm to simulate the
interactions of heterogeneous agents within a general-sum game scenario. Here we build upon
previous work by Barfuss and Meylahn [2023].

Our framework considers two agents, i ∈ {1, 2}, where each agent selects from a set of possible
actions, ai ∈ {c, d}, representing a cooperating or defecting action, respectively. The joint action
vector is denoted as a = {a1, a2}. In the traditional SARSA algorithm the state s ∈ S is shared by
both agents and together with the agent’s actions, determines the reward ri(s,a) received by agent i
and the transition to the next state s′ ∈ S.

However in our project, we then model the differences in state observability among agents by
introducing an observed state s̃ ∈ S . This clarifies the fact that one agent might not be observing the
same state as another agent, even if they co-exist in the same environment.

At each time step t, agent i selects action a with a probability xt
i(a|s̃), a frequency distribution over

actions dependent on the observed state s̃. The action selection is guided by an ϵ-greedy exploration
strategy, where the agent chooses the action with the highest state-action value with probability 1− ϵi.
Next, the agent selects an action at random with probability ϵi to encourage exploration. Specifically,
for the two-action case, the action probabilities are defined as:

xi
t(c|s̃) =

{
1− ϵi

2 if qit(c, a) > qit(d, a),
ϵi
2 otherwise, (1)

where qti(a, s̃) represents the state-action value function for agent i, updated according to the temporal
difference learning rule.

The state-action values are updated after each time step as follows:

qit+1(s̃t, at) = (1− αi)q
i
t(s̃t, at) + α

[
rit + δ

∑
a

xi
t(a|s̃t+1)q

i
t(s̃t+1, a)

]
, (2)

where αi ∈ [0, 1] is the learning rate and δi ∈ [0, 1] is the discount factor for agent i, which controls
how much weight the agent places on future rewards. These parameters can be set differently for
each agent to reflect individual differences in learning rates and future reward valuations.

Furthermore, the varying ϵi and δi parameters allow us to simulate agents with differing boldness
in their decision-making processes, creating a parallel with the risk tolerance concept observed in
real-world markets.

2.2 Environment

The environment we utilize to test our method is based on the Iterated Prisoner’s Dilemma, a well-
known framework for examining cooperation. This model serves as a representative example of
how individual incentives can conflict with collective welfare, as it captures the tension between
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cooperating for mutual benefit and defecting for individual gain. The reward matrix used for the
two-agent case is given specified in the Appendix in Table 1.

For the model simulations, we utilize the framework of Multi-Agent Reinforcement Learning (MARL).
While powerful, agent based models and Deep Reinforcement Learning (DRL) systems have sig-
nificant disadvantages for improving the understanding of the learning agent’s emergent collective
behavior: they are noisy, sometimes hard to explain, sample-inefficient, and computationally intense.
We, therefore, employ an approach to MARL inspired by complex system science and evolutionary
game theory: collective reinforcement learning dynamics (CRLD) Barfuss [2023].

CRLD is characterized by two types of idealization. First, CRLD uses dynamic learning equations as
a computationally efficient alternative to traditional RL updates, allowing for simulations to be run
on personal computers without the need for extensive computational resources. Second, CRLD can
be used to study the principles behind emergent collective behavior in idealized, low-dimensional
environments.

3 Results

For our initial experiments, we chose to use the IPD with a two-memory period as a test bed. Our
approach leverages the concept of direct reciprocity in cooperation, as theorized by Schmid et al.
[2021], in which agents base their cooperative decisions on personal historical interactions.

In a first experiment with 5,000 iterations we reliably found that agents that are more knowledgeable
receives more rewards than less knowledgeable agents. See appendix for more details.

Figure 1: Distribution of average rewards for
non self-aware agents. Agent 1 (blue) has
complete observability while Agent 2 (yel-
low) has partial observability.

Figure 2: Distribution of average rewards for
self-aware agents. Agent 1 (blue) has com-
plete observability while Agent 2 (yellow) has
partial observability.

In our second experimental setup involving 8,000 iterations with two agents. Agent 1 is always able
to completely observe its environment, it has perfect memory and perfect understanding. Agent 2’s
observational capabilities varied across two conditions: in the first, Agent 2 could observe the full
market in the first game but in the second it loses the ability to observe its own actions (Table 2). In
the second condition, Agent 2 retained knowledge of its own actions but could not observe Agent 1’s
states (Table 3).

Our results, reveal striking differences in cooperative outcomes based on these observational asym-
metries. Figure 1 shows the distribution of average rewards for the "Non Self-Aware Agent" scenario.
We observe a strong tendency toward non-cooperative outcomes, with most interactions yielding
low or zero rewards, showing that when an agent lack awareness of its own actions the results for
cooperation are catastrophic. Figure 2 illustrates the outcomes for the case in which Agent 2 is a
self-aware agent. This graph displays a broader distribution of rewards, with significant occurrences at
higher values, suggesting that self-awareness facilitates better strategic decision-making and increases
cooperation.

In a third experiment, an agent’s perception of the environment influences their roles as either
exploiters or the exploited. When Agent 2 is only aware of instances when Agent 1 cooperates (Table
4), it tends to overestimate its own appropriate level of cooperation. This miscalculation leads to

3



Figure 3: Average reward trends with Agent
2 (yellow) with partial observability focusing
on cooperation and being exploited by Agent
1 (blue) with full observability.

Figure 4: Average reward trends showing
Agent 2 (yellow) with partial observability
focusing on defection and exploiting Agent
1’s (blue) despite Agent 1’s greater awareness.

Agent 2 being exploited by Agent 1, as illustrated in Figure 3. Conversely, when Agent 2 is only
aware of Agent 1 defections (Table 5), it becomes overly skeptical, choosing to exploit Agent 1.

4 Future work

Moving forward, we aim to further test our framework in a variety of strategic interaction settings,
such as public goods games, cooperative bargaining and common pool resource games. We also
hope to further analyze the strategies developed by these agents to gain deeper insights in the
development of cooperation through the simple, low-dimensional scenarios typical of RL. Building
on this understanding, we plan to integrate DRL algorithms into our stack to enhance our model’s
capability to handle more complex environments and possibly incorporate Large Language Model
agents. We hope that this could make our models more realistic in order to aid policymakers in
crafting more informed and effective policies. Our ultimate goal is to develop a comprehensive
suite of tools that combine MDP and game-theoretical approaches to better support decision-making
processes in economics and public policy.

5 Limitations

The IPD framework, by design, encapsulates a limited set of possible interactions and may not capture
the full spectrum of strategic behaviors that agents exhibit in more nuanced scenarios. Moreover,
the computational model assumes that all agents rationalize and make decisions based solely on
predefined rules and their perception of the environment, which might not accurately reflect the
often irrational and unpredictable nature of human decision-making. The model’s outcomes are also
highly dependent on the parameters chosen for the simulations, such as learning rates and discount
factors, which might limit the generalizability of the findings to real-world applications, where such
parameters are not as easily quantifiable or consistent.
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A Appendix / supplemental material

A.1 Software

Code will be made available upon publication. A link to the repository will be provided in the
camera-ready version.

A.2 Parameters

For all experiments a constant learning rate of 0.1 and discount factor of 0.9 were used. Though it’s
possible to change these values as we have noted, in the interest of space we only presented findings
maintaining these constant.

A.3 Figures

Figure 5: Average reward for agents within mixed observability environments, ran over 5000
iterations. We observe that more knowledgeable agents, receive better rewards on the long run than
less knowledgeable agents. It is also clear from our analysis that exploitation is not a dominating
behavior as agents tend towards mostly defecting or oscillating between cooperating and defecting.

A.4 Tables

Table 1: Payoff Matrix for IPD

c d
c (1, 1) (1.2, -0.5)
d (-0.5, 1.2) (0, 0)
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Table 2: 1st Experiment: States observed by agents in two iterations of the Prisoner’s Dilemma

Agent 1, Game 1 Agent 2, Game 1 Agent 1, Game 2 Agent 2, Game 2

(C, C) (C, C) (C, C) (C, *)
(C, C) (C, D) (C, C) (C, *)
(C, C) (D, C) (C, C) (C, *)
(C, C) (D, D) (C, C) (C, *)
(C, D) (C, C) (C, D) (C, *)
(C, D) (C, D) (C, D) (C, *)
(C, D) (D, C) (C, D) (C, *)
(C, D) (D, D) (C, D) (C, *)
(D, C) (C, C) (D, C) (D, *)
(D, C) (C, D) (D, C) (D, *)
(D, C) (D, C) (D, C) (D, *)
(D, C) (D, D) (D, C) (D, *)
(D, D) (C, C) (D, D) (D, *)
(D, D) (C, D) (D, D) (D, *)
(D, D) (D, C) (D, D) (D, *)
(D, D) (D, D) (D, D) (D, *)

Table 3: 2nd Experiment: States observed by agents in two iterations of the Prisoner’s Dilemma

Agent 1, Game 1 Agent 2, Game 1 Agent 1, Game 2 Agent 2, Game 2

(C, C) (C, C) (C, C) (*, C)
(C, C) (C, D) (C, C) (*, D)
(C, C) (D, C) (C, C) (*, C)
(C, C) (D, D) (C, C) (*, D)
(C, D) (C, C) (C, D) (*, C)
(C, D) (C, D) (C, D) (*, D)
(C, D) (D, C) (C, D) (*, C)
(C, D) (D, D) (C, D) (*, D)
(D, C) (C, C) (D, C) (*, C)
(D, C) (C, D) (D, C) (*, D)
(D, C) (D, C) (D, C) (*, C)
(D, C) (D, D) (D, C) (*, D)
(D, D) (C, C) (D, D) (*, C)
(D, D) (C, D) (D, D) (*, D)
(D, D) (D, C) (D, D) (*, C)
(D, D) (D, D) (D, D) (*, D)
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Table 4: 3rd Experiment: States observed by agents in two iterations of the Prisoner’s Dilemma

Agent 1, Game 1 Agent 2, Game 1 Agent 1, Game 2 Agent 2, Game 2

(C, C) (C, C) (C, C) (C, C)
(C, C) (C, D) (C, C) (C, D)
(C, C) (D, C) (C, C) (*, C)
(C, C) (D, D) (C, C) (*, D)
(C, D) (C, C) (C, D) (C, C)
(C, D) (C, D) (C, D) (C, D)
(C, D) (D, C) (C, D) (*, C)
(C, D) (D, D) (C, D) (*, D)
(D, C) (C, C) (D, C) (C, C)
(D, C) (C, D) (D, C) (C, D)
(D, C) (D, C) (D, C) (*, C)
(D, C) (D, D) (D, C) (*, D)
(D, D) (C, C) (D, D) (C, C)
(D, D) (C, D) (D, D) (C, D)
(D, D) (D, C) (D, D) (*, C)
(D, D) (D, D) (D, D) (*, D)

Table 5: 4th Experiment: States observed by agents in two iterations of the Prisoner’s Dilemma

Agent 1, Game 1 Agent 2, Game 1 Agent 1, Game 2 Agent 2, Game 2

(C, C) (C, C) (C, C) (*, C)
(C, C) (C, D) (C, C) (*, D)
(C, C) (D, C) (C, C) (D, C)
(C, C) (D, D) (C, C) (D, D)
(C, D) (C, C) (C, D) (*, C)
(C, D) (C, D) (C, D) (*, D)
(C, D) (D, C) (C, D) (D, C)
(C, D) (D, D) (C, D) (D, D)
(D, C) (C, C) (D, C) (*, C)
(D, C) (C, D) (D, C) (*, D)
(D, C) (D, C) (D, C) (D, C)
(D, C) (D, D) (D, C) (D, D)
(D, D) (C, C) (D, D) (*, C)
(D, D) (C, D) (D, D) (*, D)
(D, D) (D, C) (D, D) (D, C)
(D, D) (D, D) (D, D) (D, D)
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